The Effects of Bike Share on Transit Ridership

Ting Ma, Chao Liu, and Sevgi Erdogan
National Center for Smart Growth
University of Maryland, College Park

TRANSIT, DEVELOPMENT AND FORME URBAINE: WASHINGTON ET PARIS
October 17, 2014
The Idea
• Understand the spatial patterns of bikeshare programs
• Understand the changing spatial patterns overtime
• Understand the impacts of bikeshare programs on transit ridership
Questions We Ask

• Is there a relationship between the spatial pattern of bicycle sharing trips and the rail transit station location?

• Does the existence of bicycle sharing station in the vicinity of a rail station help increase transit ridership?
Two-part analysis

• Spatial examination
 – Origin – Destination (O - D) analysis
 • by year
 • by season

• Econometric examination
 – OLS regression analysis
 • Bikeshare station features
 • Transit characteristics
 • Built environments
 • Socio-demographics
Capital Bicycle (CaBi) sharing in D.C.

- Established in September 2010
- 321 stations, 2,500 bicycles, 22,200 members (as of July 2014)
- Users’ profile:
 - 63%: under 35
 - 57%: male
 - 80%: white
 - 95%: have a four-year college degree
 - 52%: found bikesharing helpful at reducing their transportation cost as well as pollution

(source: 2013 Capital Bikeshare Member Survey Report)
Origin-Destination (O-D) Analysis
----by year

Number of trips by O-D pair
- 100 - 500
- 501 - 1,000
- 1,000 +
- Metrorail Stations

2011 Quarter 3
2012 Quarter 3
2013 Quarter 3
By year:
• In 2011 – 2013, the increase in bicycle share program over three years as well as the increase in number of trips
• CaBi stations with highest ridership share similar built environments
 – Woodley park zoo
 – Dupont Circle
 – Union Station
 – Easton Market
 – Tidal Basin
 – Crystal City
 – Court House
• Co-location of CaBi and metro rail stations
• Most commuting trips are shorter than other modes
By season:

- 2nd and 3rd quarter have the highest ridership
 - Tourist
 - Outdoor activities

- Despite the seasonal change, two stations have the highest ridership throughout the year:
 - Dupont Circle
 - Capitol Hill

- Some exceptions:
 - Students
DATA CATEGORY AND SOURCES

<table>
<thead>
<tr>
<th>Category</th>
<th>Variables</th>
<th>Description</th>
<th>Data source</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit service</td>
<td>Average Daily boardings of walks or bikes to different access modes</td>
<td>WMATA, 2013</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit ridership 2013</td>
<td>WMATA, 2013</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parks and ride</td>
<td>WMATA, 2013</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parking Space</td>
<td>WMATA, 2013</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus Stops</td>
<td>OTFS, 2014</td>
<td>location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPZ Peaks</td>
<td>WMATA, 2013</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>WMATA, 2013</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transit connectivity</td>
<td>NCSG 2010 (14)</td>
<td>station</td>
<td></td>
</tr>
<tr>
<td>Bike sharing Program</td>
<td>Number of Citi bike stops in transit catchment area</td>
<td>DDOT, 2013</td>
<td>location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bike ridership</td>
<td>Capital Bikeshare and DDOT, 2013</td>
<td>location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B11</td>
<td>1, transit station has Citi bike station; 0, otherwise</td>
<td>DDOT, 2013</td>
<td>location</td>
</tr>
<tr>
<td>Density</td>
<td>Residential density, Population density, employment density</td>
<td>SLD, 2012</td>
<td>Block group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Employment mix index</td>
<td>SLD, 2012</td>
<td>Block group</td>
<td></td>
</tr>
<tr>
<td>Station built environment</td>
<td>Number of intersections around station</td>
<td>OSIM, 2013</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gini index</td>
<td>OSIM, 2013</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of jobs that can be accessed within 30 minutes by auto or 60 minutes by transit</td>
<td>NCSG, 2012</td>
<td>Station</td>
<td></td>
</tr>
</tbody>
</table>

Sociodemographics (0.5-mile buffer)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Data source</th>
<th>Geography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pwhite</td>
<td>Percent of white population of the block group that Metro Park station is located</td>
<td>ACS, 2007-2011</td>
<td>Block group</td>
</tr>
<tr>
<td>PHispanic</td>
<td>Percent of Hispanic population of the block group that Metro Park station is located</td>
<td>ACS, 2007-2011</td>
<td>Block group</td>
</tr>
<tr>
<td>Ppoverty</td>
<td>Percent of household under poverty</td>
<td>ACS, 2007-2011</td>
<td>Block group</td>
</tr>
<tr>
<td>Median Income</td>
<td>Median income of the block group in which Metro Park station is located</td>
<td>ACS, 2007-2011</td>
<td>Block group</td>
</tr>
<tr>
<td>Pct_Lao0</td>
<td>Percent of household without a vehicle</td>
<td>SLD, 2012</td>
<td>Block group</td>
</tr>
<tr>
<td>householdsQ</td>
<td>Number of households in transit catchment area</td>
<td>ACS, 2007-2011</td>
<td>Census tract</td>
</tr>
</tbody>
</table>
• **Transit Service Variables**
 – Transit ridership
 – Parking
 – bus connection
 – transit frequency
 – transit connectivity

• **Bicycle Sharing Program Variables**
 – Station location
 – # of CaBi stations within metro rail station areas
 – CaBi station ridership

• **Built Environment Variables**
 – Density (employment, population, household)
 – Diversity (employment mix)
 – Design (street network density)
 – job accessibility

• **Socio-demographic Variables**
 – income
 – Racial composition
 – Car ownership
 – Poverty
OLS regression analysis

LogTransitRidership2013

<table>
<thead>
<tr>
<th></th>
<th>Model 1: Full model</th>
<th></th>
<th>Model 2: Parsimonious model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>4.39</td>
<td>1.0</td>
<td>0.000</td>
<td>4.33</td>
</tr>
<tr>
<td>logBR2013</td>
<td>0.28</td>
<td>0.06</td>
<td>0.000</td>
<td>0.26</td>
</tr>
<tr>
<td>logtransitConnectivity</td>
<td>0.04</td>
<td>0.09</td>
<td>0.669</td>
<td>-</td>
</tr>
<tr>
<td>logTPHPeak</td>
<td>0.49</td>
<td>0.20</td>
<td>0.025</td>
<td>0.49</td>
</tr>
<tr>
<td>logHouseholds000025miles</td>
<td>0.03</td>
<td>0.08</td>
<td>0.69</td>
<td>-</td>
</tr>
<tr>
<td>Logempden</td>
<td>0.14</td>
<td>0.06</td>
<td>0.018</td>
<td>0.16</td>
</tr>
<tr>
<td>logBusStops</td>
<td>0.21</td>
<td>0.12</td>
<td>0.096</td>
<td>0.20</td>
</tr>
<tr>
<td>logIntersectionQ</td>
<td>-0.12</td>
<td>0.12</td>
<td>0.301</td>
<td>-</td>
</tr>
<tr>
<td>logmedianincome</td>
<td>0.041</td>
<td>0.01</td>
<td>0.003</td>
<td>0.04</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.81</td>
<td></td>
<td></td>
<td>0.82</td>
</tr>
</tbody>
</table>
OLS regression analysis results

- 10% increase in bicycle sharing ridership will lead to 2.8% increase in transit ridership
- Employment concentration at the transit station areas has even stronger impacts on transit ridership than residential concentration
- 10% increases in transit frequency will lead to 4.9% increase in transit boardings
- Bus connection are also important to provide egress and access connection
Discussions

• Spatial patterns of bikeshare stations in both urban and suburban areas
 – Denser, mixed land use, vibrant historic districts
 – Closer to rail transit

• The close interactions between bikeshare program and rail transit
 – Higher bike ridership, higher transit ridership

• Impacts of bikeshare on transit or vice versa?
Future research

- Endogeneity
- Self-selection
- Time-series
Thanks!

Q&A