Understanding the Role of Built Environment in Reducing Vehicle Miles Traveled Accounting for Spatial Heterogeneity

Ding, Chuan, Yaowu Wang, Binglei Xie, and Chao Liu

view report

In recent years, increasing concerns over climate change and transportation energy consumption have sparked research into the influences of urban form and land use patterns on motorized travel, notably vehicle miles traveled (VMT). However, empirical studies provide mixed evidence of the influence of the built environment on travel. In particular, the role of density after controlling for the confounding factors (e.g., land use mix, average block size, and distance from CBD) still remains unclear. The object of this study is twofold. First, this research provides additional insights into the effects of built environment factors on the work-related VMT, considering urban form measurements at both the home location and workplace simultaneously. Second, a cross-classified multilevel model using Bayesian approach is applied to account for the spatial heterogeneity across spatial units. Using Washington DC as our study area, the home-based work tour in the AM peak hours is used as the analysis unit. Estimation results confirmed the important role that the built environment at both home and workplace plays in affecting work-related VMT. In particular, the results reveal that densities at the workplace have more important roles than that at home location. These findings confirm that urban planning and city design should be part of the solution in stabilizing global climate and energy consumption.